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J. Phis. A :  Gen. Phys.. Vol. 5. July 1972. Printed in Great Britain. 0 1972. 

The theory of the longitudinal development of 
electromagnetic cascades 

K 0 THIELHEIM and R ZOLLNER 
Unibersitj of Kiel. Gebaude 32, Germany 

MS receibed 29 November 1971 

Abstract. A method for the numerical integration of the cascade equations ofthe longitudinal 
development of electromagnetic cascades is described. Numerical results on the longitudinal 
development of clectron induced cascades in lead are presented in graphical form. Com- 
parisons with data from Monte Carlo simulations and with experimental data are presented. 
The accuracy of approximations A and B of conventional cascade theory is investigated. 

1. Historical background 

The conventional theory of electromagnetic cascade development is mainly based on 
the application of Laplace and Mellin transforms to a system of transport equations. 
After the pioneer work of Carlson and Oppenheimer (1937), Bhabha and Heitler (1937) 
and Landau and Rumer (1938), who introduced this method for the calculation of 
longitudinal cascade development without ionization losses and its improvement by 
Snyder (1938) and Bhabha and Chakrabarthy (1943) who included ionization losses in 
this treatment, conventional cascade theory has continuously been further developed 
by Snyder (1949), Bhabha and Chakrabarthy (1948), Nishimura and Kamata (1952). 
Chakrabarthy and Gupta (1956) and many other authors. 

An alternative approach to the numerical treatment of the cascade problem was 
offered by the Monte Carlo method first applied by Wilson (1952) especially after the 
invention of electronic computers. A great amount of data have become available from 
the work of Butcher and Messel (1960), Zerby and Moran (1963) and Nagel (1965). 

Recently, a method for the numerical integration of cascade equations on the basis 
of ‘exact’ cross sections has been proposed (Thielheim and Zollner 1970a) which may be 
useful in view of the widespread application of electromagnetic cascade theory in high 
energy and cosmic ray physics. These results do not suffer from difficulties inherent 
either in conventional cascade theory due to the application of asymptotic cross sections 
and approximative procedures or in Monte Carlo simulations, namely the statistical 
fluctuations of results and the linear increase of computing time with increasing initial 
energy. 

In this paper, after a presentation of cascade equations and fundamental cross 
sections, the method of numerical integration is described in detail together with results 
on the longitudinal development of electron induced cascades in lead. These results, 
which are estimated to be accurate to about 1 % in a specified region of energy enable 
us to analyse deficiencies of approximations A and B of conventional cascade theory. 
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2. Cascade equations 

The mean longitudinal development of electromagnetic cascades is described by a set 
of distribution functions F ( j ,  E,, E ,  t )  dE giving the mean number of particles of type j 
within the range of energy (E ,  E + dE) at the depth t within a cascade of primary energy Eo.  
These distribution functions are obtained as solutions of a system of integrodifferential 
equations with given initial conditions. 

The system of cascade equations expresses the change in the mean numbers of 
particles of typej within the range of energy ( E ,  E + dE) in the interval of depth (t ,  t + dt) 

Eo a 
-F(j ,  E,, E ,  t )  = lim 1 dE' Wk'J(t, E', E)F(k ,  E,, E: t )  
at 11-O ( k J E + q  

dE' Wj'k(t, E,  E')F(j, E,, E ,  t )  + Sj(t, E) fo r j  = 1,. , ., N .  (2.1) 

This expression contains positive contributions originating from interactions within 
energy intervals (E',  E'+dE') above the energy E considered as well as negative contri- 
butions describing the loss of particles of type j within the range of energy ( E ,  E + dE), 
in the interval ( t ,  t + dt). Wj'k(t, E ,  E') dE' dt is the probability for a particle of type j 
and energy E to give rise to a particle of type k within the range of energy (E' ,  E'+ dE') 
in the interval ( t ,  t+dt). The quantity Sj(t, E )  is an additional source term. 

Introducing N-component functionsf(E, t )  and S(E,  t ) ,  as well as the square matrix W 
of N rows corresponding to the number N of different types of particles and the diagonal 
matrix @, the system of cascade equations with respect to different components is 
written in matrix form 

1 

dE' W(t,  E', E)F(E' ,  t )  - dE' @(t, E ,  E ' )F(E,  t )  
E o  2 

-F(E, t )  = lim 
a t  V - ,  [ J E + q  

3. Crosssections 

The following fundamental interactions are taken into account : bremsstrahlung, Msller 
scattering and Bhabha scattering (at high energy transfer), ionization (at low energy 
transfer), pair production, photoeffect and Compton scattering. Interaction probabilities 
are used in the form of first order Born approximations of quantum electrodynamics 
with various corrections. Explicit formulae are presented in table 1 (units of energy 
are mcz = 1). 

The formula of the differential probability for bremsstrahlung implies atomic 
shielding corrections based on the Thomas-Fermi model. Corrections are also provided 
for particles outgoing in a Coulomb field. Additionally, there is an empirical correction 
factor, which depends only on the initial energy and the atomic number. This correction 
factor is shown in figure 1 for illustration. The asymptotic form of this formula is 
obtained for complete screening and the neglection of Coulomb as well as empirical 
correction terms. 

The differential probability for pair production implies the same atomic shielding 
and Coulomb correction functions. The empirical correction factor, as shown in 
figure 1, depends only on the initial energy and the atomic number. Again, the 
asymptotic form is obtained for complete screening and neglection of Coulomb as well 
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as empirical corrections. The energy loss of an electron due to electron-electron 
scattering is understood as an individual interaction if the energy loss exceeds 0.1 MeV. 
These collisions are described by Mdler's formula. 

Figure 1. Empirical correction factors, A :  Cbr(E. Z) .  B :  C,(E, 2) and C : C,,(E. Z ) .  as tunc- 
tions of energy Tfor lead (2 = 82). 

Similarly, the energy loss of a positron due to positron-electron scattering is under- 
stood as an individual interaction if the energy loss exceeds 0.1 MeV. These collisions 
are described by Bhabha's formula. In both cases knock-on particles are taken into 
account. (In the calculations, the results of which are presented below, Merller's formula 
is used if the initial energy is smaller than 10 MeV, while Merller's and Bhabha's formulae 
are used with weight one half each, if the initial energy is greater than 100 MeV. In the 
region of initial energy between 10 MeV and 100 MeV a linear interpolation of both 
formulae is applied.) If the energy loss of electrons or positrons in electron-positron 
collisions or positron-electron collisions, respectively, is smaller than 0.1 MeV the 
interaction is described as a continuous process, in which the density effect is taken into 
account. (The results given in this paper have been calculated using the expression for 
the ionization loss of electrons for both electrons and positrons, since at low energies the 
number of electrons is much greater than the number of positrons while at high energies 
the expressions for the energy loss of electrons and of positrons coincide.) The energy 
loss of photons due to Compton scattering is described by means of the well known 
formula of Klein and Nishina. 

The interaction probability for the photoeffect is dealt with by means of Sauter's 
formula with empirical corrections in the low energy region as is illustrated in figure 1. 
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4. Numerical procedure 

Discrete intervals of geometrically increasing length T,+ = (1 + a)T ,  with 0 d LI d 1 
and g = 1, .  . . , M are introduced for numerical integration with respect to 'kinetic' 
energy T = E for photons and T = E -  1 for electrons. (Calculations have been 
performed with 1 + = 

Any function F( T )  is represented by mean values Fg.  Mean values Wg,g' of W( T, T ' )  
are calculated from 

the unit of energy is mc2 = 1.) 

with the help of a weight function G(T) K I/(T+constant)" with 1 d m Q 3, the para- 
meters of which are chosen to give an approximative representation F(T) _v FgG(T)  
within each interval (T', T, ,  l) .  The relative error induced by this procedure 

is estimated to be smaller than 

The choice of geometrically increasing intervals results in the proportionality of comput- 
ing time to In To. By discretization with respect to energy, the cascade equations (2.2) 
are reduced to a system of ordinary differential equations with respect to depth 

M d 
d t  -F'(t) = 1 W',g'("F''(t)+Sg(t). 

g ' = g  
(4.4) 

More economically, these equations are written in matrix notation also with respect to 
different groups of energy 

d 
--F(t) dt = W(t)F( t )+S( t ) .  (4.5) 

If the matrix W is independent of depth, as is assumed in the following considerations, 
the solution of this equation for given initial values F ,  = F(t,) is 

F ( t )  = exp{W.(t-t,)}.F,+ dt'exp{W.(t-t')}S(t'). (4.6) 11 
In the absence of 'external sources' S( t )  the solution is 

F ( t )  = exp { W . ( t  - to )}Fo (4.7) 
which may be calculated numerically by approximative procedures. For small values 
of the elements of the argument matrix W .  At the matrix exponential function exp(W . At) 
is approximated to the second order by 

exp(W.At) = ( 1---- W y . ( l + y ) .  

The difference matrix is obviously of the order of 

A( W .  At)3. 
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For greater values of the elements of the argument matrix ( W .  Ai)  the approximation 
(4.8) is written in the form 

(4.10) 

The number K of subintervals within the range Ar is determined from the limit of the 
error admitted. For example, if the range is t = 40 X ,  for an error smaller than 0.1 OO. 
the number of subintervals is found to be K = 2 x IO3. (Results presented below have 
been obtained with ti = 8 x lo3 intervals.) 

5. Results 

In figure 2(a. b. c and d) integral energy spectra N,(T > T'. t )  of electrons in electron 
induced electromagnetic cascades in lead are represented in the form of 'transition 
curves' as functions of depth t (in units of radiation length). Initial energies are 
To = lo3 MeV, IO4 MeV, lo5 MeV, and lo6 MeV. In each diagram, different curves 
correspond to different values of cut-off energy T,. Curves for cut-off energ~es 
T, ,< I0 MeV should be corrected due to the lateral divergence of particles. 

c 

Figure 2. Transition curves h',(T > K ,  i) of electrons in electron induced cascades in lead 
for four values of To (MeV): (a)  lo3, (b)  lo4. (c) lo5 and ( d )  lo6. In each part, different curves 
correspond to different values of T,  (MeV). 

In figure 3(a, b, c and d), analogously. 'transition curves' for photons are shown. 
In the range of small depth, these curves exhibit the well known increase with increasing 
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Figure 3. Transition curves N,(T  > T, ,  t )  of photons in electron induced cascades in lead 
for four values of To (MeV): (a) lo3, (b)  lo4, (c) lo5 and ( d )  lo6. In each part, different curves 
correspond to different values of r, (MeV). 

Table 2. Interpolating formulae 

1 +6.61V+61V2[ 1 +- 1 __ ln(7,))]G'9' 
Max N7(To, TJ = V { 11.5(1 +61V2) 2 T, 

r&(To, T,) = 1~086111 

100 MeV < To < lo6 MeV 
10 MeV < T,  < lo5 MeV Range of validity 

Inaccuracy less than 10% 

{and v < 0.1 
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depth as a consequence of particle multiplication due to pair production and brenis- 
strahlung. At a certain value of depth thax(To, T,) or t;,,(To, T,) a curve may pass 
through a maximum : max N e (  To, T,) or max N,(To, K ) ,  respectively. These parameters 
of 'transition curves' are reproduced by interpolative formulae in table 2. In the range 
of great depth, integral particle numbers decrease exponentially with increasing depth. 
The exponential coefficient i,, is determined through the equilibrium of particle produc- 
tion and absorption. 

In figure 4(a and b) differential energy spectra II(T,',, T ,  t) of electrons are shown 
as functions of depth for initial energies To = lo3 MeV, and lo6 MeV. In each diagram. 
different curves refer to different values of depth. In the range of energy T < 10 MeV. 
curves should be corrected due to the obliqueness of particle trajectories. 

In figure 5(a and b) differential energy spectra of photons are shown. 

T ( M e V )  
Figure 4. Differential energy spectra n(To,  T, I )  of electrons in electron induced cascades 
for two values of To (MeV): (a )  lo3 and (b)  lo6. In each part, different curves correspond 
to different values o f t  (depth). 

I o2 

IO 

h 

- I  
ĥ  
Lo I - 10- 
A 

Io-2 

 IO-^ 
Io-' I IO  102 lo3 10-1 I IO io2 103 

TtMeVV) 

Figure 5. Differential energy spectra y(To, T, t )  of photons in electron induced cascades for 
two values of To (MeV): (a) lo3 and (b )  lo6. In each part, different curves correspond to 
different values of t (depth). 
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6. Comparison with results of Monte Carlo simulations and with empirical data 

In figures 6 to 8 our results are compared with data from Monte Carlo simulations and 
with empirical data (Thielheim and Zollner 1970a, b). Integral energy spectra Ne( T >  T,, t )  
of electrons in electron induced electromagnetic cascades in lead are shown as functions 
of initial energy To. In each diagram, different curves representing our results correspond 
to different values of cut-off energy T,. Full symbols represent results of Monte Carlo 
simulations which have been performed by various authors on the basis of cross sections 
compatible with ours. Open symbols represent experimental results. In performing 
this comparison, one has to keep in mind that the results of Monte Carlo simulations 
are subject to statistical fluctuations as indicated in figure 15. Empirical results may be 
subject to systematic errors from the difficulty to determine the exact cut-off energy 
defined by the registrating apparatus. 

1 0 3 ,  , , I  

4 

l O - ' l  I l l  I l l  I l l  I l l  I 1 1  I 

I IO IO2 io3 io4 io5 106 
Primary energy (MeV) 

Figure 6. Integral energy spectra N,(T  > K ,  t )  of electrons in electron induced cascades in 
lead as  functions of initial energy To at depth t = 3 radiation lengths. Different curves 
correspond to different values of (MeV). Monte Carlo data:  Volkel (1965); A Zerby 
and Moran (1963); 0 Messel and Crawford (1970). Experimental data:  a Heusch and 
Prescott (1964); 0 Thom (1964); w Becklin and Earl (1964); 0 Crannel (1967); X Nelson 
et al (1966). 

Obviously, there is fair agreement of our results with those from Monte Carlo 
simulations as well as with those from measurements, in the range of energy above 
several MeV, where no differences are expected between the results of one dimensional 
and three dimensional cascade theory. 

7. Comparison of results of numerical integration with those of various approximative 
methods 

7.1. Implications of approximations A and B of conventional cascade theory 

In order to come to conclusions about the influence of simplifications involved in the 
application of asymptotic cross sections frequently used in approximations A and B 
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Figure 7. Integral energy spectra Ne( T > 7,. r )  of electrons in electron induced cascades In 
lead as functions of initial energy To at depth I = 5 radiation lengths. Different curLe\ 
correspond to different values of T,  (MeV). Experimental points are as described in figure 6 

P r i m a r y  e n e r g y  To ( M e V )  

Figure 8. Integral energy spfctra ,L-,(T > 7,. r )  of electrons in electron induced cascades 
in lead as functions of initial energy To at depth t = 9 radiation lengths. Different cur\Jes 
correspond to different values of T,  (MeV). Experimental points are as described in figure 6. 
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of conventional cascade theory we have compared results of numerical integrations 
performed on the basis of asymptotic cross sections with those performed on the basis 
of exact cross sections (Thielheim and Zollner 1971b). 

The use of asymptotic cross sections implies the neglection of Moller and Bhabha 
scattering in one cascade equation and the neglection of Compton scattering and the 
photo effect in the other cascade equation. Moreover, in approximation B constant 
ionization loss is assumed as well as complete screening in pair production and 
bremsstrahlung. There are no empirical corrections for energies smaller than 10 MeV. 
In approximation A ionization loss is neglected. 

In order to come to conclusions about the influence of approximative procedures 
involved in approximation B, we have also compared results of numerical integrations 
based on asymptotic cross sections with results of approximation B of cascade theory 
based on the same cross sections. Approximative procedures include the use of 
incomplete solutions by neglection of higher order terms in some series expansions and 
the use of the double saddle point method in integral retransformations. Finally a 
comparison of results from approximations A and B is performed. 

7.2. Review of approximation A 

We find it useful to present short reviews of approximations A and B of conventional 
cascade theory. In these, the differential energy spectra n and y of electrons and photons 
respectively are written as functions of total energy E rather than ‘kinetic’ energy T .  

Under the assumptions of approximation A cascade equations reduce to the form 

with integral operators 

(7.2b) 

( 7 . 2 ~ )  

Making use of the homogeneity in the energy dependence, Mellin transforms are 
introduced 

(7.3) 
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for which the following system of ordinary differential equations holds 

d 
-M,(s, t )  = - A(s)  . M ,  + B(s) . M i  
dt 

d 
--M,(s, t )  = C(s)M,-o .  M,.  
dt 

(7.4) 

The coefficients of this system of ordinary differential equations with respect to t are 

1 
A(s)  = 1.3603~(~)-  - 0.075 13 

(s + l)(s + 2 )  

2 2.706 
B(s) = -- 

s (s+2)(s+3) 

1 1.3603 
C(S) = -+- 

s + 2  s (s+l ) '  

Introduction of initial conditions results in solutions 

iMn(s, t )  = uy(s) . exp(/,,(s) . t )  + uy(s) . exp(i,(s) . t )  

M, ( s ,  t )  = u:(s) . exp(i,,(s) . t )  + a;(s) . exp(i,(s) . t). 

The exponents iLl and 2, are determined by the conditions of solubility 

( 7 . 5 ~ )  

(7.5b) 

(7.5c) 

(7.6) 

(7.7) 

In (7.6), the coefficients of exponential functions are determined by initial conditions 

1 
U: = (( i2(s)  + A(s))MP, - B(s)M;j 

i 2 ( S )  - i 1 ( S )  

1 
A,(s)  - i I (s) 

U ;  = {(L,(s)+o)M: -C(s)M;j :--- 

(7 .8 )  

= M:-ui 

corresponding to one initial electron of energy E ,  

rI(E, 0 )  = 6(E - E,) ;,(E,O) = 0 (7.9) 

resulting in 

M;(s)  = E; M;(s )  = 0. (7.10) 

Numerical results of approximation A have been obtained from (7.3) neglecting 
contributions containing exp(i,(s) . t )  

(7.11) 
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by application of the saddle point method 

with so taken from 

(7.12a) 

7.3. Review of approximation B 

Cascade equations in approximation B include energy independent ionization loss 

a a -n = -A'n+B'y+€-rI 
at aE 

(7.13~) 

(7.1 3 b) a 
at 
--y = c'n - o'i. 

Solutions of these equations are given the form of Taylor series with respect to c l  = € / E  

iD 1 P  

?(E ,  t )  = 1 (- ds E-'" "@jl(s, t). 
n = O  

The lowest order approximation is 

@%, t )  = M,(s, t )  

@.yo(s, t )  = M,(s, t). 

(7.14~) 

(7.14b) 

(7.1%) 

(7.15b) 

Introduction into the system of cascade equations and comparison of first order terms 
results in a system of equations which are difference equations with respect to s and 
differential equations with respect to t .  Initial conditions are 

@,"(s, 0) = @,xs, 0) = 0 for n > 0. (7.16) 

The application of the Laplace transformation with respect to t results in recursion 
relations 

(7.1 7a) 

(7.1 7b) 

If all terms with the exception of those containing l / ( p  - I . , @ ) )  are neglected, the electron 
component is given by 

(7.18) 
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where k ( s ,  n)  is determined by the recursion relation 

I / i ( s .  n )  = Lo(s. 1 2 ) .  / i ( s ,  n - 1 

with 

(7.19) 

The differential energy spectrum of electrons is thus found in the form 

(7.21) 

within a range of convergence 0 6 6 p. Analytical continuation of the solution is 
performed after transformation of the sum over discrete values of n into an integral 
over a continuous variable q within the region iarg(q)l 6 n/2 of the complex q plane. 
For this purpose the function M(s ,  n )  is interpolated by means of an infinite product 

(7.12) 

which is in agreement with the former expression for all positive integer values of (1. 
The function 

is analytical within the half plane defined above with poles at the points y = 1 1 ,  the  
residues of which agree with the corresponding terms in the infinite sum over 1 7 .  There- 
fore, (7.21) may be written in this form containing an integral over the continuous variable 
q along a path of integration around the aforementioned poles 

(7.24) 

In our recalculations of approximation B, numerical results have been obtained by 
application of the double saddle point method to this expression. 

7.4. Comparison of results from approximation B of concentional cascade theory with 
results of numerical integration using asymptotic cross sections and with results of numerical 
integration using exact cross sections 

Figure 9(a and b) shows the integral energy spectrum of electrons in electron induced 
electromagnetic cascades in lead as a function ofdepth. Initial energies are To = lo3 MeV 
and lo4 MeV. Full curves are results of numerical integration based on exact cross 
sections corresponding to different values of cut-off energy. Broken curves indicated 
by open circles represent results of numerical integration based on asymptotic cross 
sections, while broken curves indicated by crosses represent results obtained by means 
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Figure 9. Transition curves of electrons in electron induced cascades in lead calculated 
with various assumptions. Full curves, numerical integration (exact cross sections): broken 
curves with open circles, numerical integration (asymptotic cross sections): broken curves 
with crosses, approximation B (asymptotic cross sections). Initial energies (MeV) are : 
(a) lo' and (b)  lo4. Different curves correspond to different values of T,  (MeV) in each part. 

of approximation B. In the region of small depth, results of numerical integrations 
based on asymptotic cross sections are greater than those based on exact cross sections. 

This is due to the different behaviour of exact and asymptotic differential interaction 
probabilities. In the region of cascade equilibrium at greater depth t, exact curves are 
steeper than asymptotic ones. This is a consequence of the fact, that total interaction 
probabilities are greater in their asymptotic form than in their exact form. This difference 
decreases with increasing initial energy. It is quite remarkable that these differences 
are much greater for photons than for electrons, as is demonstrated by figure 10(a and b). 

Results obtained by means of approximation B tend to be parallel to those obtained 
by numerical integration based on asymptotic cross sections. Thus there is an almost 
constant relative error invoked by approximative methodical procedures in approxima- 
tion B, which amounts to typically 10 %. 



1070 K 0 Thielheim and R Zollner 

10-2, I I 
0 5 IO 15 

t 

I U  

t 

1o-IL 
0 

. 

,-. 
5 IO 

Figure 10. Transition curves of photons In electron induced cascades in  lead calculated 
with various assumptions. Full curves. numerical integration (exact cross sections): broken 
curves with open circles, numerical integration (asymptotic cross sections). Initial energies 
(MeV) are: (a )  lo3 and ( b )  IO4. Different curves correspond to different Falues of T (MeV)  
in each part. 

7.3. Comparison of results from approximation A with those from approximation B qf' 
conventional cascade theory 

In figure 11 the total number of electrons in electron induced electromagnetic cascades 
in lead is shown as a function of depth for different values of the decadic logarithm of 
the ratio of initial to cut-off energy. Results of approximation A tend to be greater than 
those of approximation B due to the neglection of ionization losses. This difference 
decreases with increasing values of initial and cut-off energies. There is an indication 
that results from approximation A are somewhat greater than results from approxima- 
tion B for very high energies where different assumptions concerning cross sections 
are no longer important while approximative procedures involved in approximation B 
may result in greater systematic errors. 
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0 5 IO 
t 

I S  

Figure 11. Total number of electrons in electron induced cascades in lead as functions of 
depth for different values of Ig(To/T,). + approximation A. To = lo6 MeV, 0 To = I O 5  
MeV, x To = lo4 MeV, A To = lo3 MeV from approximation B. 

8. Conclusions 

Numerical data of the longitudinal development of electron induced electromagnetic 
cascades from numerical integration of cascade equations presented in graphical form 
for practical applications, are estimated to be accurate to about 1 % above several MeV, 
where the lateral divergence of cascades is of no importance. Comparison with data 
from Monte Carlo simulations and with experimental data shows full agreement. 

We are therefore enabled to demonstrate the limits of applicability of approxima- 
tions A and B of conventional cascade theory. In general, results from approximation B 
are less accurate for photons than for electrons in electron-induced cascades. 

In comparison with the Monte Carlo procedure, the method of numerical integration 
proposed by us offers the advantages of slower increase of computing time with increasing 
initial energy and of the absence of statistical fluctuations in results. 
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